skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Merrill, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The K-Truss of a graph is a cohesive subgraph that has been widely used for community detection in applications such as social networks and security analysis. In this paper, we first propose one optimized triangle search kernel with a few operations that can be used in both triangle counting and triangle search to replace the existing list intersection method. Based on the optimized kernel, three truss analytics algorithms, an optimized K-Truss parallel algorithm, a maximal K-Truss parallel algorithm, and a Truss decomposition parallel algorithm, are developed to efficiently enable different kinds of graph analysis. Moreover, all proposed parallel algorithms have been implemented in the highly-productive parallel language Chapel and integrated into the open-source framework Arkouda. Experimental results compared with the existing list intersection-based method show that for both synthetic and real-world graphs, the proposed method can significantly improve the performance of truss analysis on large graphs. The implemented method is publicly available from GitHub. 
    more » « less
  2. Exploratory graph analytics helps maximize the informational value for a graph. However, the increasing graph size makes it impossible for existing popular exploratory data analysis tools to handle dozens-of-terabytes or even larger data sets in the memory of a common laptop/personal computer. Arkouda is a framework under early-development that brings together the productivity of Python at the user side with the high-performance of Chapel at the server side. In this paper, the preliminary work on overcoming the memory limit and high performance computing coding roadblock for high level Python users to perform large graph analysis is presented. A simple and succinct graph data structure design and implementation at both the Python front-end and the Chapel back-end in the Arkouda framework are provided. A typical graph algorithm, Breadth-First Search (BFS), is used to show how we can use Chapel to develop high performance parallel graph algorithm productively. Two Chapel based parallel Breadth-First Search (BFS) algorithms, one high level version and one corresponding low level version, have been implemented in Arkouda to support analyzing large graphs. Multiple graph benchmarks are used to evaluate the performance of the provided graph algorithms. Experimental results show that we can optimize the performance by tuning the selection of different Chapel high level data structures and parallel constructs. Our code is open source and available from GitHub (https://github.com/Bader-Research/arkouda). 
    more » « less